
44 
Electromechanical Energy Conversion Systems (EECS), Vol. 1, Issue. 1, Winter 2021 

Electromechanical Energy Conversion Systems (EECS), 

Niroo Research Institute.

Vol. 01, Issue. 01. Winter 2021 

AN OBSERVER BASED BLADE-PITCH CONTROLLER FOR WIND USING 

FINITE SLIDING MODE IN HIGH WIND SPEED 

Ali Khaksari, A. Rezazadeh
 *
, Majid Ebadifard 

Faculty of Electrical and Computer Engineering, University of Shahid Beheshti, Tehran, Iran. 

*Corresponding author, Email: A-rezazade@sbu.ac.ir

Abstract 

This paper deals with the problem of designing a robust dynamic output feedback controller for the wind machine. 

This paper for the first time exploits the designing controller problem of the wind turbines in the presence of time 

varying delay and uncertain parameters. In this paper, a novel algorithm is proposed which designs a proper 

controller based on the idea of Lyapunov Krasovskii functional and Finsler’s Lemma. To validate the result of the 

proposed algorithm, comparative simulation examples are given which are two different dimension turbines to 

investigate the performance of the design methodology as compared to those of previous approaches. 
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1. INTRODUCTION

Investigation and control of wind machines are 

frequently encountered in the nowadays studies [1]. 

Wind power is one of the fastest growing electrical 

industry and owning the rapid development progress 

among the other renewable power generation 

elements. 

The large wind turbines take more attentions in 

recent literatures which are kindly massive structures 

with enormous blade spans [2]. With the enlargement 

of wind turbine generating capacity, it is vital to 

develop feasible, reliable and powerful control 

strategies in the wind energy conversion systems to 

achieve maximum power performance. 

The control objectives are different when the wind 

speed varies over its nominal values. When it is 

below the nominal value, the variable speed 

controller has been used. The main objective of this 

controller is to extract the maximum energy form the 

wind power at its operating point. When the wind 

speed is above the nominal speed, the pitch controller 

has been used which its objective is to maintain the 

output power constant. Since the variable speed wind 

turbine can produce higher energy with lower 

component mechanical stress, this type of turbines 

has become field of increasing interest [3,4]. Some 

interesting methods for designing simple controllers 

were developed during the past fifty years [8, 9], such 

as lead-lag compensation, loop-shaping, PID, and 

Quantitative Feedback Theory. These methods 

provides acceptable performances, however, they do 

not provide a general method for tuning the controller 

design parameters [7].  

Consideration of the delay in the model of wind 

machines is not usual in the previous studies. 

However, the existence of the time varying delay in 

this model is generally clear due to the natural 

properties of its dynamics. Additionally, hydraulic 

pressure drive unit in large power wind generation 

system causes time varying delay to the wind 

generation system [10, 11].Unfortunately, there is not 

any study that basically and directly investigates the 

time varying delay in the wind model equations. 

Indeed, the controllers proposed so far have been 

designed without considering any time varying delay 

in the system’s model. 

This paper proposes an algorithm to design an output 

feedback controller for the wind turbine machines in 

the presence of time varying delay and uncertain 

model parameters. We briefly present a conventional 

wind turbine model. Then, a proper controller is 
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designed by the proposed algorithm and applied to 

the turbine model.. The proposed controller is 

basically presented based on the idea of Lyapunov 

Krasovskii functional. This idea is frequently 

encountered in the previous studies [13-17]. 

This paper is organized as follows: Section 2 

proposes the transfer function model from pitch to 

tower fore-aft deflection including a time varying 

delay in the hydraulic pressure drive unit of wind 

generation system. In Section 3, the main idea of this 

paper is mentioned which is an algorithm to design a 

proper controller for the uncertain model in the 

presence of time varying delay. The simulation 

examples are presented in section 4 which consists of 

two examples with different dimension turbines. The 

simulation results reveal the superiority of the 

proposed controller. Finally, Section 5 concluded the 

paper. 

2. SYSTEM MODEL

At the operating point, the linear model of blade-

tower dynamics is considered to be as follows [12]: 

𝑓(𝑠) = 𝐺𝑝(𝑠)𝛽(𝑠)  (1)

Where f is the tower fore-aft modal deflection and β 

is the deviation of the pitch angle from its nominal 

value. Indeed, equation (1) states that there exists a 

causal linear equation relating the tower deflection to 

the pitch angle deviation. The transfer model Gp(s)is

assumed to have the following form: 

𝐺𝑝(𝑠) =
𝑎2𝑠2+𝑎1𝑠+𝑎0

𝑠4+𝑏3𝑠
3+𝑏2𝑠

2+𝑏1𝑠+𝑏0
 (2)

The transfer function coefficients {ai}i=0
2 and {bi}i=0

3

represents the time constant of the wind generation 

model. The pitch-driven model is under the influence 

of the hydraulic pressure drive which causes time 

delay to the generation model [12]. It complexes 

controller design and analysis stability of the model. 

According to this effect, the model equation (2) will 

be modified as follows: 

𝐺𝑝(𝑠) =
𝑎2𝑠2+𝑎1𝑠+𝑎0

𝑠4+𝑏3𝑠
3+𝑏2𝑠

2+𝑏1𝑠+𝑏0
𝑒−𝜏𝑠𝑛  (3)

Where τ is the time delay parameter. Usually, the 

time delay parameter is considered to be constant and 

fix in time in the previous studies [12]. This 

assumption has reduced generality of the model 

because the delay parameter is under influence of 

some physical and mechanical model which is 

varying with time. Hence, the delay parameter is 

assumed to be time varying in a limited interval as: 
∀𝑡:  𝜏(𝑡) ∈ [𝜏𝑙 , 𝜏𝑢]                                          (4)

Where τl and τu are the values of the lower and

upper bounds of the time varying delay, respectively. 

It is worth to mention that the time derivation of the 

delay should be finite due to some physical 

constraints. Hence, the following assumption is 

considered:  

∀𝑡:  |𝜏̇(𝑡)| ≤ 𝜏𝐷  (5)

Where τD is the upper bound of the time derivation of

the mentioned delay parameter. According to the 

model deviations, time, and physical dependency of 

the model, the coefficients of the transfer function (3) 

are considered to have fix but unknown values. Thus, 

the following equations describe the uncertainty 

bounds of these coefficients: The values of these 

coefficients depend on the physical specification of 

the wind machine and environment parameters. 

Hence, the lower and upper bounds in equations (6) 

have been determined such that covers the reasonable 

deviations of the physical and environment 

parameters. 

𝑎𝑖 ∈ [𝑎𝑖 , 𝑎̅𝑖]  𝑓𝑜𝑟 𝑖 = 0,1,2

𝑏𝑖 ∈ [𝑏𝑖 , 𝑏̅𝑖]  𝑓𝑜𝑟 𝑖 = 0,1,2,3  (6)

Before presenting the main idea of this paper, the 

following lemmas are needed to present. 

Lemma 1 [15].Assume g(θ): ℝ → ℝn is a vector 

function, Q is a symmetric positive definite matrix 

and c1 and c2 are positive numbers(c2 > c1). Then,

the following inequality is satisfied: 

(𝑐2 − 𝑐1)∫ 𝑔̇(𝛼)𝑇𝑄𝑔̇(𝛼)𝑑𝛼
𝑐2

𝑐1

≥ 

(𝑔(𝑐2) − 𝑔(𝑐1))
𝑇
𝑄 ∫ 𝑔(𝛼)𝑇𝑄𝑔(𝛼)𝑑𝛼

ℎ

0
   (7)

Lemma 2 (Finsler’s Lemma) [16]. Let x ∈ Rn, 

Q ∈ Rn×n be a symmetric positive definite matrix and 

B ∈ Rm×n such that rank(B) < n. Then, the 

following statements are equivalent: 

i) ∀𝑥:    𝐵𝑥 = 0 → 𝑥𝑇𝑄𝑥 < 0
ii) ∃𝑋 ∈ 𝑅𝑛×𝑚:      𝑄 + 𝑋𝐵 + 𝐵𝑇𝑋𝑇 < 0

iii) 𝐵⊥𝑇
𝑄𝐵⊥ < 0

Where B⊥ is the null matrix of the matrix B which 

means BB⊥ = 0. 

3. CONTROLLER DESIGN

In this section, the main idea of this paper is 

presented which is to design an output feedback 

controller for the model (3). The designed controller 

should guarantee the stability the model for all corner 

values of model coefficients and considering the time 

varying delay. For this purpose, a set of mathematical 
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tools is used to design the controller which is 

mentioned in the following. Before presenting the 

designing approach, model (3) is transformed into the 

state space model such as follows: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝛽(𝑡 − 𝜏(𝑡))   (8)

𝑓 = 𝐶𝑥(𝑡) 

Where x(t) ∈ R4 is the state vector of this model. 

The model matrices are also obtained as given below: 

𝐴(𝑏) = [

−𝑏3 −𝑏2 −𝑏1 −𝑏0

1 0 0 0
0 1 0 0
0 0 1 0

], 𝐵 = [

1
0
0
0

]    (9)

𝐶(𝑎) = [0 𝑎2 𝑎1 𝑎0]

Then, the controller is considered to have the 

following structure: 

Using equations (9), one obtains: 

𝑥̇𝑐(𝑡) = 𝐴𝑐𝑥𝑐(𝑡) + 𝐵𝑐𝑓(𝑡) 

𝛽(𝑡) = 𝐶𝑐𝑥𝑐(𝑡)   (10)

where xc ∈ Rnc in which nc is the controller order

and Ac ∈ Rnc×nc , Bc ∈ Rnc and Cc ∈ Rnc are

controller matrices that are considered as the design 

parameters. Indeed, these matrices should have 

design such as the closed loop model is stable. 

Therefore, in the following the equation of the closed 

loop model is obtained: 

𝑧̇(𝑡) = [
𝐴(𝑏) 0𝑛,𝑛𝑐

𝐵𝑐𝐶(𝑎) 𝐴𝑐

] 𝑧(𝑡) + [
0𝑛,𝑛 𝐵𝐶𝑐

0𝑛𝑐,𝑛 0𝑛𝑐,𝑛𝑐

] 𝑧(𝑡 −

𝜏(𝑡))  (11)

Where z(t) = [xT(t)xc
T(t)]T is the state vector of the

closed loop model. For convince, the following 

notations are defined: 

𝒜(𝑎, 𝑏) = [
𝐴(𝑏) 0𝑛,𝑛𝑐

𝐵𝑐𝐶(𝑎) 𝐴𝑐
]  (12)

Based on equations (12), the partial derivation of 𝛾 

with respect to 𝛽 can be obtained such as follows: 

𝒜𝑑 = [
0𝑛,𝑛 𝐵𝐶𝑐

0𝑛𝑐,𝑛 0𝑛𝑐,𝑛𝑐

]  (13)

Using definitions (12-13), one obtains: 

𝑧̇(𝑡) = 𝒜(𝑎, 𝑏)𝑧(𝑡) + 𝒜𝑑𝑧(𝑡 − 𝜏(𝑡))  (14)

Please, note that the system matrices of the closed 

loop model are uncertain due to the model coefficient 

uncertainty. For convince, the following notations are 

used to mention the model uncertainties: 

𝜋𝑎 = {
[𝑎0, 𝑎1, 𝑎2], [𝑎0, 𝑎1, 𝑎̅2], [𝑎0, 𝑎̅1, 𝑎2],

… , [𝑎̅0, 𝑎̅1, 𝑎̅2]
}  (15)

𝜋𝑏 = {
[𝑏0, 𝑏1, 𝑏2, 𝑏3], [𝑏0, 𝑏1, 𝑏2, 𝑏̅3],

… , [𝑏̅0, 𝑏̅1, 𝑏̅2, 𝑏̅3]
}  (16)

In the sequel of this section, the designing procedure 

is proposed which consists of two separate stages. To 

completely understand the steps of this algorithm, the 

following lemmas and theorem will be needed to 

mention. 

Theorem 1. Assume there exists symmetric positive 

definite matrices P ∈ Rm×m, {Qi}i=1
3 ⊂ Rn×n and

{Ri}i=1
3 ⊂ Rn×nand also matrix {Ya,b}a∈πa,b∈πb

 ∈

R5n×n that satisfy the following conditions (17): 

where 𝑁𝑑1
and 𝑁𝑑2

 are the number of subdomains of

[𝑉, 𝑉̅] and [𝜔, 𝜔̅],  respectively,  [𝑉𝑖 , 𝑉̅𝑖] is the 𝑖𝑡ℎ

subdomain of [𝑉, 𝑉̅], and [𝜔𝑗 , 𝜔̅𝑗] is the 𝑗𝑡ℎ

subdomain of [𝜔, 𝜔̅]. The corners of each region are 

defined as:  

∀𝑎 ∈ 𝜋𝑎 , ∀𝑏 ∈ 𝜋𝑏:  

[
 
 
 
 
 𝜙1

𝑒−𝛾𝜏𝑙

𝜏𝑙
𝑅1 (1 − 𝜏𝐷)

𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅2

𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅3 𝑃

∗ 𝜙2 0𝑚,𝑚 0𝑚,𝑚 0𝑚,𝑚

∗ ∗ 𝜙3 0𝑚,𝑚 0𝑚,𝑚

∗ ∗ ∗ 𝜙4 0𝑚,𝑚

∗ ∗ ∗ ∗ 𝜙5 ]
 
 
 
 
 

(17) 

+𝐻𝑒{𝑌𝑎,𝑏[𝒜(𝑎, 𝑏)0𝑚,𝑚𝒜𝑑0𝑚,𝑚  − 𝐼𝑚,𝑚]} ≤ 0 

Where m = n + nc and matrices {ϕi}i=1
5 and Gare 

defined with the equations (18): 

𝜙1 = 𝛾𝑃 + 𝑄1 + 𝑄2 + 𝑄3 −
𝑒−𝛾𝜏𝑙

𝜏𝑙
𝑅1 − (1 − 𝜏̇)

𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅2

−
𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅3

𝜙2 = −𝑒−𝛾𝜏𝑙𝑄1 −
𝑒−𝛾𝜏𝑙

𝜏𝑙
𝑅1

𝜙3 = −𝑒−𝛾𝜏𝑢(1 − 𝜏̇)𝑄2 − (1 − 𝜏̇)
𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅2

𝜙4 = −𝑒−𝛾𝜏𝑢𝑄3 −
𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅3

𝜙5 = 𝜏𝑙𝑅1 + 𝜏𝑅2 + 𝜏𝑢𝑅3                       (18) 

Then, model (14) will be globally exponentially 

stable. 

𝑉1 = 𝑧𝑇(𝑡)𝑃𝑧(𝑡)  (19)

𝑉2,1 = ∫ 𝑒−𝛾(𝑡−𝛼)𝑡

𝑡−𝜏𝑙
𝑧𝑇(𝛼)𝑄1𝑧(𝛼)𝑑𝛼  (20)

𝑉2,2 = ∫ 𝑒−𝛾(𝑡−𝛼)𝑡

𝑡−𝜏
𝑧𝑇(𝛼)𝑄2𝑧(𝛼)𝑑𝛼  (21)

𝑉2,3 = ∫ 𝑒−𝛾(𝑡−𝛼)𝑡

𝑡−𝜏𝑢
𝑧𝑇(𝛼)𝑄3𝑧(𝛼)𝑑𝛼  (22)
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𝑉2 = 𝑉2,1 + 𝑉2,2 + 𝑉2,3  (23)

𝑉3,1 = ∫ ∫ 𝑒−𝛾(𝑡−𝛽)𝑧̇𝑇(𝛽)
𝑡

𝑡+𝛼
𝑅1𝑧̇(𝛽)𝑑𝛽𝑑𝛼

0

−𝜏𝑙
 (24)

𝑉3,2 = ∫ ∫ 𝑒−𝛾(𝑡−𝛽)𝑧̇𝑇(𝛽)
𝑡

𝑡+𝛼
𝑅2𝑧̇(𝛽)𝑑𝛽𝑑𝛼

0

−𝜏
 (25)

𝑉3,3 = ∫ ∫ 𝑒−𝛾(𝑡−𝛽)𝑧̇𝑇(𝛽)
𝑡

𝑡+𝛼
𝑅3𝑧̇(𝛽)𝑑𝛽𝑑𝛼

0

−𝜏𝑢
 (26)

𝑉3 = 𝑉3,1 + 𝑉3,2 + 𝑉3,3  (27)

Then, the main Lyapunov Krasovskii functional is 

considered to be as follows; 

𝑉 = 𝑉1 + 𝑉2 + 𝑉3  (28)

In the following the time derivations of these 

Lyapunov functions are obtained, successively. 

𝑉̇1 = −𝛾𝑉1 + 𝛾𝑧𝑇(𝑡)𝑃𝑧(𝑡) + 𝑧𝑇(𝑡)𝑃𝑧̇(𝑡) + 𝑧̇𝑇(𝑡)𝑃𝑧(𝑡)  (29) 

Obviously, the time derivation of the first Lyapunov 

Krasovskii functional will be obtained such as 

follows: 

Using the Leibnitz formula [16], one obtains: 

𝑉̇2,1 = −𝛾𝑉2,1 + 𝑧𝑇(𝑡)𝑄1𝑧(𝑡) − 𝑒−𝛾𝜏𝑙𝑧𝑇(𝑡 − 𝜏𝑙)𝑄1𝑧(𝑡 −

𝜏𝑙)                                                                 (30)

𝑉̇2,2 = −𝛾𝑉2,2 + 𝑧𝑇(𝑡)𝑄2𝑧(𝑡) − 𝑒−𝛾𝜏(1 − 𝜏̇)𝑧𝑇(𝑡 −

𝜏)𝑄2𝑧(𝑡 − 𝜏)                                                           (31)

For convince, consider the following notation: 

𝑉̇2,3 = −𝛾𝑉2,3 + 𝑧𝑇(𝑡)𝑄3𝑧(𝑡) − 𝑒−𝛾𝜏𝑢𝑧𝑇(𝑡 − 𝜏𝑢)𝑄3𝑧(𝑡 −
𝜏𝑢)                                          (32)

Using equations (30-32), the following equation is 

obtained: 

𝑉̇2 ≤ −𝛾𝑉2 + 𝑧𝑇(𝑡)(𝑄1 + 𝑄2 + 𝑄3)𝑧(𝑡) − 𝑒−𝛾𝜏𝑙𝑧𝑇(𝑡 −
𝜏𝑙)𝑄1𝑧(𝑡 − 𝜏𝑙) − 𝑒−𝛾𝜏𝑢(1 − 𝜏̇) 𝑧𝑇(𝑡 − 𝜏)𝑄2𝑧(𝑡 − 𝜏) −

𝑒−𝛾𝜏𝑢𝑧𝑇(𝑡 − 𝜏𝑢)𝑄3𝑧(𝑡 − 𝜏𝑢)          (33)

Also, using Leibnitz formula, one obtains: 

𝑉3,1 = −𝛾𝑉3,1 + 𝜏𝑙𝑧̇
𝑇(𝑡)𝑅1𝑧̇(𝑡) −

∫ 𝑒−𝛾(𝑡−𝛼)𝑧̇𝑇(𝛼)
𝑡

𝑡−𝜏𝑙
𝑅1𝑧̇(𝛼)𝑑𝛼            (34)

𝑉3,2 =

−𝛾𝑉3,2 + 𝜏𝑧̇𝑇(𝑡)𝑅2𝑧̇(𝑡) − (1 −

𝜏𝐷) ∫ 𝑒−𝛾(𝑡−𝛼)𝑧̇𝑇(𝛼)
𝑡

𝑡−𝜏
𝑅2𝑧̇(𝛼)𝑑𝛼  (35) 

𝑉3,3 = −𝛾𝑉3,3 + 𝜏𝑢𝑧̇𝑇(𝑡)𝑅3𝑧̇(𝑡) −

∫ 𝑒−𝛾(𝑡−𝛼)𝑧̇𝑇(𝛼)
𝑡

𝑡−𝜏𝑢
𝑅3𝑧̇(𝛼)𝑑𝛼  (36) 

According to the Lemma 1, the following 

equations will be obtained: 

𝑉3,1 ≤ −𝛾𝑉3,1 + 𝜏𝑙𝑧̇
𝑇(𝑡)𝑅1𝑧̇(𝑡) −

𝑒−𝛾𝜏𝑙

𝜏𝑙
(𝑧(𝑡) −

𝑧(𝑡 − 𝜏𝑙))
𝑇
𝑅1(𝑧(𝑡) − 𝑧(𝑡 − 𝜏𝑙))  (37)

𝑉3,2 ≤

−𝛾𝑉3,2 + 𝜏𝑧̇𝑇(𝑡)𝑅2𝑧̇(𝑡) − (1 − 𝜏𝐷)
𝑒−𝛾𝜏𝑢

𝜏𝑢
(𝑧(𝑡) −

𝑧(𝑡 − 𝜏))
𝑇
𝑅2(𝑧(𝑡) − 𝑧(𝑡 − 𝜏))  (38)

𝑉3,3 ≤ −𝛾𝑉3,3 + 𝜏𝑢𝑧̇𝑇(𝑡)𝑅3𝑧̇(𝑡) −
𝑒−𝛾𝜏𝑢

𝜏𝑢
(𝑧(𝑡) −

𝑧(𝑡 − 𝜏𝑢))
𝑇
𝑅3(𝑧(𝑡) − 𝑧(𝑡 − 𝜏𝑢))  (39) 

Using equation (37-39), the following equation is 

obtained: 

𝑉̇3 ≤ −𝛾𝑉3 + 𝑧̇𝑇(𝑡)(𝜏𝑙𝑅1 + 𝜏𝑅2 + 𝜏𝑢𝑅3)𝑧̇(𝑡) −
𝑒−𝛾𝜏𝑙

𝜏𝑙
(𝑧(𝑡) − 𝑧(𝑡 − 𝜏𝑙))

𝑇
𝑅1(𝑧(𝑡) − 𝑧(𝑡 − 𝜏𝑙)) − (1 −

𝜏𝐷)
𝑒−𝛾𝜏𝑢

𝜏𝑢
(𝑧(𝑡) − 𝑧(𝑡 − 𝜏))

𝑇
𝑅2(𝑧(𝑡) − 𝑧(𝑡 − 𝜏)) −

𝑒−𝛾𝜏𝑢

𝜏𝑢
(𝑧(𝑡) − 𝑧(𝑡 − 𝜏𝑢))

𝑇
𝑅3(𝑧(𝑡) − 𝑧(𝑡 − 𝜏𝑢))  (40) 

Using equations (29), (33) and (40), the time 

derivation of the main Lyapunov function can be 

written as follows: 

𝑉̇ ≤

−𝛾𝑉 + 𝜁𝑇

[
 
 
 
 
 𝜙1

𝑒−𝛾𝜏𝑙

𝜏𝑙
𝑅1 (1 − 𝜏𝐷)

𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅2

𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅3 𝑃

∗ 𝜙2 0𝑛×𝑛 0𝑛×𝑛 0𝑛×𝑛

∗ ∗ 𝜙3 0𝑛×𝑛 0𝑛×𝑛

∗ ∗ ∗ 𝜙4 0𝑛×𝑛

∗ ∗ ∗ ∗ 𝜙5 ]
 
 
 
 
 

𝜁  (41) 

Whereζ(t) = [zT(t)zT(t − τl)z
T(t − τ)zT(t − τu)ż

T(t)]T.

Using condition (41) and based on the Finsler’s 

Lemma, one has:  

𝑉̇ ≤ −𝛾𝑉  (42) 

The above equation establishes the globally 

exponentially stability of the model (14). 

Remark 1.Theorem 1 proposes a set of conditions to 

establish the stability of the model (14) with the 

mentioned model assumptions. The proposed 

conditions exploits the exponentially stability of the 

model (14) considering conditions (4-6). 

Remark 2.Theproposed conditions of Theorem 1 are 

not LMI due to the existence of coupling terms 

between Lyapunov and design parameters in the term 

Y[𝒜(a, b)0m,m𝒜d0m,m  − Im,m]. It is worth to

mention that the closed loop matrices 𝒜(a, b) and 

𝒜d depend on the design parameters Ac, Bc and Cc.

Hence, the two stage algorithm is used to solve the 

conditions of Theorem 1. 

As mentioned before, the conditions of Theorem 1 is 

not LMI and to solve the conditions with LMI 

toolboxes the following optimization problem is 

proposed:    P1:  𝑚𝑖𝑛ℎ,𝑃,{𝑄𝑖}𝑖=1
3 ,{𝑅𝑖}𝑖=1

3 ,𝑌𝐴𝑐,𝐵𝑐,𝐶𝑐
ℎ 

𝑃 > 0 

𝑅𝑖 > 0, 𝑄𝑖 > 0  𝑓𝑜𝑟 𝑖 = 1,2,3 
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∀𝑎 ∈ 𝜋𝑎 , ∀𝑏

∈ 𝜋𝑏 : 

[
 
 
 
 
 
 𝜙1

𝑒−𝛾𝜏𝑙

𝜏𝑙
𝑅1 (1 − 𝜏𝐷)

𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅2

𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅3 𝑃

∗ 𝜙2 0𝑚,𝑚 0𝑚,𝑚 0𝑚,𝑚

∗ ∗ 𝜙3 0𝑚,𝑚 0𝑚,𝑚

∗ ∗ ∗ 𝜙4 0𝑚,𝑚

∗ ∗ ∗ ∗ 𝜙5 ]
 
 
 
 
 
 

+ 𝐻𝑒{𝑌𝑎,𝑏[𝒜(𝑎, 𝑏, 𝐴𝑐 , 𝐵𝑐)0𝑚,𝑚𝒜𝑑(𝐶𝑐)0𝑚,𝑚  − 𝐼𝑚,𝑚]}

≤ ℎ𝐼5𝑛×5𝑛 

𝜙1 = 𝛾𝑃 + 𝑄1 + 𝑄2 + 𝑄3 −
𝑒−𝛾𝜏𝑙

𝜏𝑙
𝑅1 − (1 − 𝜏𝐷)

𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅2

−
𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅3 

𝜙2 = −𝑒−𝛾𝜏𝑙𝑄1 −
𝑒−𝛾𝜏𝑙

𝜏𝑙
𝑅1 

𝜙3 = −𝑒−𝛾𝜏𝑢(1 − 𝜏𝐷)𝑄2 − (1 − 𝜏𝐷)
𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅2 

𝜙4 = −𝑒−𝛾𝜏𝑢𝑄3 −
𝑒−𝛾𝜏𝑢

𝜏𝑢
𝑅3 

𝜙5 = 𝜏𝑙𝑅1 + 𝜏𝑢𝑅2 + 𝜏𝑢𝑅3 

Finally, using the mention preliminaries and Theorem 

1, the steps of the proposed algorithm are briefly 

presented such as follows: 

Algorithm: 

1) Set 𝑘 = 0.

2) Consider matrices 𝐴𝑐
(0)

, 𝐵𝑐
(0)

 and 𝐶𝑐
(0)

 to have the

random values.

3) Solve the optimization problem P1by considering

𝐴𝑐 = 𝐴𝑐
(𝑘)

, 𝐵𝑐 = 𝐵𝑐
(𝑘)

 and 𝐶𝑐 = 𝐶𝑐
(𝑘)

 to obtain

𝑃(𝑘), {𝑄𝑖
(𝑘)

}
𝑖=1

3
,{𝑅𝑖

(𝑘)
}
𝑖=1

3
and {𝑌𝑎,𝑏

(𝑘)
}
𝑎∈𝜋𝑎,𝑏∈𝜋𝑏

and ℎ(𝑘).

4) f ℎ(𝑘) ≤ 0 returns 𝐴𝑐
(𝑘)

, 𝐵𝑐
(𝑘)

 and 𝐶𝑐
(𝑘)

 as the

5) solutions of the algorithm.

6) Else, solve the optimization problem P1 by

considering 𝑃 = 𝑃(𝑘), {𝑄𝑖}𝑖=1
3 = {𝑄𝑖

(𝑘)
}
𝑖=1

3
, 

{𝑅𝑖}𝑖=1
3 = {𝑅𝑖

(𝑘)
}
𝑖=1

3
and {𝑌𝑎,𝑏}𝑎∈𝜋𝑎,𝑏∈𝜋𝑏

=

{𝑌𝑎,𝑏
(𝑘)

}
𝑎∈𝜋𝑎,𝑏∈𝜋𝑏

to obtain 𝐴𝑐
(𝑘+1)

, 𝐵𝑐
(𝑘+1)

 and

𝐶𝑐
(𝑘+1)

 and ℎ(𝑘+1).

7) If ℎ(𝑘+1) ≤ 0 returns 𝐴𝑐
(𝑘+1)

, 𝐵𝑐
(𝑘+1)

 and 𝐶𝑐
(𝑘+1)

as the solutions of the algorithm.

8) Else if |ℎ(𝑘+1) − ℎ(𝑘)| ≤ 𝜖 finalize the algorithm

and returns null.

9) Else set 𝑘 = 𝑘 + 1  and go to step 3.

Remark 3.The parameter ϵ is a threshold value 

considered to guarantee the convergence and to stop 

the algorithm if there is not any feasible solution. 

Therefore, the proposed algorithm will be used to 

design a proper output feedback controller for the 

model (14) subject to conditions (4-6). 

4. SIMULATION

Two examples are considered in this section to 

convey the efficiency and performance of the design 

algorithm in compared to the other previous methods. 

It is worth to mention that the considered model 

assumptions of model (14) are not directly used in the 

previous methods. Hence, to compare the results, the 

other methods are designed by removing some 

assumptions. However, the obtained controllers are 

applied to the original model. The simulation results 

of this section reveal the superiority of the proposed 

algorithm in compare to the previous methods. 

Example 1.This model is given from paper [12]. The 

following table presents some physical and 

environment parameters of this model: 

TABLE 1.  CONFIGURATION PARAMETERS  OF THE FIRST 

WIND TURBINE

Parameter value 

rotor diameter 70𝑚 

tower height 90𝑚 

rated power 1.5𝑀𝑊 

wind speed 15𝑚/𝑠 

pitch angle 0∘

Using the parameter values of Table 1, the transfer 

function of the wind machine is obtained such as 

follows [12].  

𝐺𝑝(𝑠) =
2.426𝑠2−4.6345𝑠−147.3

𝑠4+4.857𝑠3+126.2𝑠2+266.4𝑠+3659
𝑒−.25𝑠  (43)

It has been supposed that the coefficients of the 

above model can have up to 10% error from the 

nominal values in equation (43). Also, the delay 

dependent parameters are assumed to be τl = .2,

τu = .3 and τD = .1.

Using the proposed algorithm of this paper, the 

proper controller is obtained which is presented in the 

following: 

𝐴𝑐 = [
24.0363 −121.8684
883.4176 −444.4847

], 𝐵𝑐 = [
−1.2180
−4.4264

] 

𝐶𝑐 = [−.7260  − .3313]  (44)

The following figures show the results of this 

simulation example: 
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Fig. 1. THE PITCH ANGLE OF THE FIRST SIMULATION EXAMPLE 

Fig 2. MODAL DEFLECTION OF THE FIRST SIMULATION EXAMPLE

Fig 3. TIME VARYING DELAY OF THE FIRST SIMULATION EXAMPLE

Fig 4. THE PITCH ANGLE OF THE SECOND SIMULATION 

EXAMPLE 

Fig 5. MODAL DEFLECTION OF THE SECOND SIMULATION

EXAMPLE 

Fig 6. TIME VARYING DELAY OF THE SECOND SIMULATION 

EXAMPLE 

As it can be seen, the designed controller stabilizes 

the uncertain time varying delay model (43). 

Example 2.Consider a wind machine with the following 

parameters [12], 

TABLE 2.  PARAMETERS CONFIGURATION PARAMETERS OF THE

SECOND WIND TURBINE OF THE FIRST WIND TURBINE 

Parameter value 

rotor diameter 15𝑚 

tower height 25𝑚 

rated power 50𝑘𝑊 

wind speed 15𝑚/𝑠 

pitch angle 0.75∘ 

Then, the wind machine has the following transfer 

function equation which is given from [12]: 

𝐺𝑝(𝑠) =
−0.2545𝑠2−0.0647𝑠+0.9384

𝑠4+2.28𝑠3+878.5𝑠2+437.7𝑠+7.7×104
𝑒−.25𝑠  (45)

Assume the numerator coefficients have 10% error 

with respect to the nominal values. Also, assumeτl =
.1, τu = .4 and τD = .5.

Using the proposed algorithm of this paper, the 

proper controller is obtained which is presented in the 

following: 
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𝐴𝑐 = [
−0.0919 0.1601
0.1224 −0.8797

], 𝐵𝑐 = [
0.4916
0.3892

] 

𝐶𝑐 = [0.9089  0.5857]  (46)

The following figures show the results of this 

simulation example: This example is also shows the 

performance of the designed controller to stabilize 

the closed loop model. 

5. CONCLUSION

The problem of design controller for the wind turbine 

model in the presence of time varying delay and 

uncertain parameters had been investigated in this 

paper. The proposed controller is based on the idea of 

Lyapunov Krasovskii functional and guarantees the 

globally exponentially stability of the wind turbine 

model. The simulation results of this paper reveal the 

efficiency and performance of the proposed 

controller. 
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