iman sadeghi
Abstract
This paper contains an investigation about using electric buses alternatively in a BRT line in Tehran. In order to reach this purpose driving cycle of electric bus for different bus routes are simulated and studied. Also with the aim to choose the pilot route, several criteria such as, air and noise ...
Read More
This paper contains an investigation about using electric buses alternatively in a BRT line in Tehran. In order to reach this purpose driving cycle of electric bus for different bus routes are simulated and studied. Also with the aim to choose the pilot route, several criteria such as, air and noise pollution, traffic characteristics, numbers of passengers on each route have been considered. Hence, Azadi terminal to Tehran-Pars intersection route has been selected. In addition, characteristics and specifications of proposed propulsion and energy storage system based on driving cycle simulation results of different routes in Tehran are determined.In this study, designing a storage system (battery) and main characteristics including total capacity and battery capacity based on the amount of daily activity, number of daily round trips, average energy consumption of the route and daily electrical power consumption of each bus and the battery charging and discharging ranges and total inverter and motor efficiency will be determined.
Arsalan Hekmati; Iman Sadeghi Mahalli; Mohammad Siamaki
Abstract
In the PMSM, by creating a sinusoidal distribution for conductors at the stator surface, the airgap’s flux density is closer to the sinus form [1]. By replacing the field’s winding with a permanent magnet, the brushes, slip-rings, and copper losses could be removed from synchronous motor. ...
Read More
In the PMSM, by creating a sinusoidal distribution for conductors at the stator surface, the airgap’s flux density is closer to the sinus form [1]. By replacing the field’s winding with a permanent magnet, the brushes, slip-rings, and copper losses could be removed from synchronous motor. The permanent magnet generates motors with permanent excitation. Fig. 1, shows two different ways in which permanent magnets are put into rotor .The following figure shows the ratio of magnetic torque to reluctance torque in synchronous machines. Regarding the mechanism of torque producing, synchronous machines are divided into three distinct groups. The surface-PMSM (SPMSM), in which arc-shaped permanent magnets are embedded on the surface of cylindrical rotor .Such machine is a complete PMSM which produces only magnetic torque. Synchronous reluctance machine (synRM) is a pure reluctance machine shown in Fig. 2. f. The inset SPMSM belongs to SPMSM category in terms of magnet arrangement, however it is a combined reluctance-magnetic motor because of its magnetic saliency. Interior PMSM (IPMSM) in which permanent magnets are buried inside the rotor (Fig. 2. c, d, and e) has magnetic saliency, so it is a hybrid reluctance-magnetic motor which can be considered as a PMSM motor regarding its reluctance torque (region II) or a synRM motor regarding its magnetic torque.
Arsalan Hekmati; iman sadeghi
Abstract
Synchronous speeds in all types of alternating current machines depend on the frequency of the power grid, and performance at higher speeds at steady conditions requires higher frequency feeds. The development of speed control drive technology in recent decades has prompted renewed attention to high-speed ...
Read More
Synchronous speeds in all types of alternating current machines depend on the frequency of the power grid, and performance at higher speeds at steady conditions requires higher frequency feeds. The development of speed control drive technology in recent decades has prompted renewed attention to high-speed engines. Important advantages of using high speed electric motors include higher density (and smaller dimensions) and greater torque generation capability. Also, the use of these motors enables the removal of the gearbox and lubrication system, which reduces maintenance costs. Nowadays, surface-mounted PMSMs are increasingly used for high-speed applications, because of the merits of simple structure and high-strength of the rotor. This paper first discusses the fundamental differences in the configurations of ordinary and high-speed permanent magnet motors, considering their specific characteristics. The specimens and their properties, have been discussed. Finally, the modern applications of high-speed permanent magnet motors have been introduced. also, the main manufacturers of high speed synchronous motors have been presented.