Document Type : Original Article

Authors

1 Department of Electrical Engineering, Sharif University of Technology, Tehran; ah.kooshki@ee.sharif.edu

2 Department of Electrical Engineering, Sharif University of Technology

Abstract

Coreless Permanent Magnet (CPM) machines are increasingly used in many industrial applications, such as automotive and aerospace applications, wind turbines, medical equipment, robotics, servo drives, and so on. In coreless permanent magnet DC machines, the rotor has a coreless winding structure and due to the absence of an iron core, the permanent magnet plays a significant role in these machines. Also, the shaft’s material can change the flux distribution and is another effective parameter on machine performance. Thus, in this paper, a typical coreless PMDC brushed machine is simulated and the effects of magnetization direction and the amount of the residual flux density of permanent magnet, and also the influence of ferromagnetic and non-ferromagnetic material of the shaft on machine performance, are studied and analyzed through three-dimensional finite element analysis. The results show that using a ferromagnetic shaft with a diametrical magnetized permanent magnet can improve the machine's performance in motor mode.

Keywords

Main Subjects

  • Habib, A., Mohd Zainuri, M.A.A., Che, H.S., Ibrahim, A.A., Rahim, N.A., Alaas, Z.M. and Ahmed, M.M.R., 2022. A systematic review on current research and developments on coreless axial flux permanent magnet machines. IET Electric Power Applications, 16(10), pp.1095-1116.
  • Yang, L., Zhao, J., Liu, X., Haddad, A., Liang, J. and Hu, H., 2018. Comparative study of three different radial flux ironless BLDC motors. IEEE Access6, pp.64970-64980.I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.
  • Karnavas, Yannis L., and Ioannis D. Chasiotis. "PMDC coreless micro-motor parameters estimation through grey wolf optimizer." In 2016 XXII International Conference on Electrical Machines (ICEM), pp. 865-870. IEEE, 2016.
  • Pahlavani, M.R.A. and Tahanian, H., 2021. Design of a small disc-type coreless permanent magnet brushed DC actuator. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering40(5), pp.997-1010.
  • Wang, X., Li, T., Cui, X. and Zhao, X., 2022. Design and Analysis of Coreless Axial Flux Permanent Magnet Machine with Novel Composite Structure Coils. Energies15(14), p.5162.
  • Kou, B., Huang, C., Zhao, X. and Zhang, L., 2022, May. Comparative Analysis of Coreless Multidisc Axial Flux Permanent Magnet Motors for Electric Propulsion System. In 2022 IEEE 5th International Electrical and Energy Conference (CIEEC)(pp. 3051-3055). IEEE.
  • Liu, X., Hu, H., Zhao, J., Belahcen, A., Tang, L. and Yang, L., 2015. Analytical solution of the magnetic field and EMF calculation in ironless BLDC motor. IEEE Transactions on Magnetics52(2), pp.1-10.
  • Hwang, C.C., Li, P.L., Chuang, F.C., Liu, C.T. and Huang, K.H., 2009. Optimization for reduction of torque ripple in an axial flux permanent magnet machine. IEEE Transactions on Magnetics45(3), pp.1760-1763.
  • Aydin, M., Gulec, M., Demir, Y., Akyuz, B. and Yolacan, E., 2016, September. Design and validation of a 24-pole coreless axial flux permanent magnet motor for a solar powered vehicle. In 2016 XXII International Conference on Electrical Machines (ICEM)(pp. 1493-1498). IEEE.
  • Geng, W. and Zhang, Z., 2018. Analysis and implementation of new ironless stator axial-flux permanent magnet machine with concentrated nonoverlapping windings. IEEE Transactions on Energy Conversion33(3), pp.1274-1284.
  • Liu, Y., Zhang, Z., Wang, C., Geng, W. and Yang, T., 2020. Design and analysis of oil-immersed cooling stator with nonoverlapping concentrated winding for high-power ironless stator axial-flux permanent magnet machines. IEEE Transactions on Industrial Electronics68(4), pp.2876-2886.
  • Geng, W., Zhang, Z. and Li, Q., 2020. High torque density fractional-slot concentrated-winding axial-flux permanent-magnet machine with modular SMC stator. IEEE Transactions on Industry Applications56(4), pp.3691-3699.
  • Huzlik, R. and Ondrusek, C., 2016, September. Design of axial coreless permanent magnet generator for small hydro power plant. In 2016 XXII International Conference on Electrical Machines (ICEM)(pp. 1539-1544). IEEE.
  • Taran, N., Rallabandi, V. and Ionel, D.M., 2019, June. Waved: A coreless axial flux pm motor for drive systems with constant power operation. In 2019 IEEE Transportation Electrification Conference and Expo (ITEC)(pp. 1-6). IEEE.
  • Taran, N., Rallabandi, V. and Ionel, D.M., 2019, June. Waved: A coreless axial flux pm motor for drive systems with constant power In 2019 IEEE Transportation Electrification Conference and Expo (ITEC)(pp. 1-6). IEEE.
  • Anvari, B., Li, X., Toliyat, H.A. and Palazzolo, A., 2018. A coreless permanent-magnet machine for a magnetically levitated shaft-less flywheel. IEEE Transactions on Industry Applications54(5), pp.4288-4296.
  • Stamenkovic, I., Milivojevic, N., Schofield, N., Krishnamurthy, M. and Emadi, A., 2012. Design, analysis, and optimization of ironless stator permanent magnet machines. IEEE Transactions on Power Electronics28(5), pp.2527-2538.
  • Santiago, J. and Bernhoff, H., 2010. Regular paper Comparison between axial and radial flux PM coreless machines for flywheel energy storage.  Electrical Systems6(2).
  • Huang, C., Kou, B., Zhao, X., Niu, X. and Zhang, L., 2022. Multi-objective optimization design of a stator coreless multidisc axial flux permanent magnet motor. Energies15(13), p.4810.
  • Taqavi, O., Abdollahi, S.E. and Aslani, B., 2021, February. Investigations of Magnet Shape Impacts on Coreless Axial-Flux PM Machine Performances. In 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)(pp. 1-5). IEEE.
  • Aydin, M. and Gulec, M., 2016. A new coreless axial flux interior permanent magnet synchronous motor with sinusoidal rotor segments. IEEE Transactions on magnetics52(7), pp.1-4.
  • Dehez, B., Baudart, F. and Perriard, Y., 2017, May. Analysis of a new topology of flexible PCB winding for slotless BLDC machines. In 2017 IEEE International Electric Machines and Drives Conference (IEMDC)(pp. 1-8). IEEE.
  • Wu, S., Zhao, X., Jiao, Z., Luk, P.C.K. and Jiu, C., 2016. Multi-objective optimal design of a toroidally wound radial-flux Halbach permanent magnet array limited angle torque motor. IEEE Transactions on Industrial Electronics64(4), pp.2962-2971
  • Jumayev, S., Borisavljevic, A., Boynov, K., Pyrhonen, J. and Lomonova, E.A., 2014. 3D model of armature field of helical (faulhaber) winding including rotor eddy currents. In Young Researchers Symposium 2014 Proceedings, Gent(pp. 1-6).
  • Jumayev, S., Boynov, K.O., Paulides, J.J.H., Lomonova, E.A. and Pyrhönen, J., 2016. Slotless PM machines with skewed winding shapes: 3-D electromagnetic semianalytical model. IEEE Transactions on Magnetics52(11), pp.1-12.
  • Jumayev, S., Borisavljevic, A., Boynov, K., Pyrhonen, J. and Lomonova, E.A., 2014. 3D model of armature field of helical (faulhaber) winding including rotor eddy currents. In Young Researchers Symposium 2014 Proceedings, Gent(pp. 1-6).
  • Hwang, C.C. and Li, P.L., 2012. Comparison of Performance between Concentrated and Rhombic Windings for a Slotless Brushless DC Motor. In Applied Mechanics and Materials(Vol. 130, pp. 2832-2835). Trans Tech Publications Ltd.

Jumayev, S., Borisavljevic, A., Boynov, K., Lomonova, E.A. and Pyrhönen, J., 2013, March. Force and torque calculation methods for airgap windings in permanent magnet machines. In 2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER) (pp. 1-4). IEEE